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Abstract 

 

This paper presents comparison of iterative methods for sparse linear systems containing large sparse systems. 

While direct methods are more in use and are error free, they are often expensive and time consuming. A 

comparison of some options such as the popular steepest-descent and conjugate gradient method are presented. 

Other methods such as the Arnoldi iteration are also given.  
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3. INTRODUCTION 

 

Linear systems are systems that use linear operators. In 

this paper, it deals with methods to solve linear systems 

of the form 𝐴𝑥 = 𝑏 where 𝐴 is a matrix of coefficients, 

𝑥 is a column vector composed of variables and 𝑏 is a 

column vector with the given values. 

 

Even though there are various methods available to 

solve linear systems such as the Gaussian elimination, 

LU-factorization method, etc., it can get cumbersome 

while solving large systems in reality. This paper looks 

at systems involving sparse matrices. 

 

4. Solving Sparse Linear Systems 

 

There are easier methods than the ones outlind 

here, to solve linear systems, Cramer’s Rule being one 

of them. However, the implementation of such methods 

on matrices of high dimensions becomes difficult. 

Hence, the ones outlined in the following becomes an 

easier option for solving such systems. 

 

4.1 Sherman-Morrison Formula 

The Sherman-Morrison Formula uses the idea of 

replacing the original matrix in the sum of matrix 𝐴 and 

the product of the vectors 𝑢 and 𝑣.  

 

For a linear system 𝐴𝑥 = 𝑏,where the 𝑛 × 𝑛 ma-

trix 𝐴is a special or an almost special form such as tri-

angular or tridiagonal, the Sherman-Morrison formula 

can be used to solve the linear system. It provides a 

formula to find the inverse of a matrix 𝐴 = 𝐵 −

 𝑢𝑣𝑡 ,where 𝐵is a nonsingular 𝑛 × 𝑛 matrix.  

 

𝐴 is nonsingular if and only if 1 − 𝑣𝑡(𝐵−1𝑢) ≠ 0. In 

this case, the Sherman Morrison formula is  

𝐴−1 = (𝐼 +
1

1 − 𝑣𝑡(𝐵−1𝑢)
(𝐵−1𝑢)𝑣𝑡) 𝐵−1

 

 

From the Sherman-Morrison Formula, the following 

algorithm can be formed to find the solution for 𝐴𝑥 =

𝑏(MIT, 2006): 

 

i. Solve 𝐵𝑧 = 𝑢. 

ii. Find 𝛼 = 1 − 𝑣𝑡(𝐵−1𝑢) = 1 − 𝑣𝑡 𝑧 

a. If 𝛼 = 0 , 𝐴  is singular and hence 

𝐴−1 cannot be found. 

b. If 𝛼 ≠ 0, 𝐴 is non singular and 𝐴−1 

exists. 

iii. Solve 𝐵𝑦 = 𝑏. 

iv. Find 𝛽 =
𝑣𝑡𝑦

𝛼 . 

v. The solution for 𝐴𝑥 = 𝑏 is  

𝑥 = 𝑦 +  𝛼𝑧. 

 

The Sherman-Morrison formula can be applied 

to a class of sparse problems. This is particularly useful 

if the inverse of 𝐵  is provided or can be calculated 

quickly. It allows the method to build up for more 

complicated matrices by adding a row or a column at a 

time. The method is especially useful as a rank-one 

change in a matrix results in a rank-one change in the 
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inverse of the matrix. It requires 𝑂(𝑛2) operations to 

find the inverse in comparison to 𝑂(𝑛3)  operations 

needed by another method such as the Gaussian elimi-

nation. While this is suitable for application for 

rank-one changes. It becomes unstable wit repeated use 

as the approximation errors grows with the repetitions.  

 

2.2.      The Method of Steepest Descent 

 The steepest descent method is an iterative 

process and is also known as gradient descent. It uses 

minimization of f, which is of quadratic form (Boyd, 

2008)(Shewchuk, 1994): 

𝑓(𝑥) =
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 + 𝑐 

where 𝐴 is symmetric and positive definite, 𝑥 and 𝑏 are 

vectors and 𝑐 is a scalar constant. 𝑓(𝑥) is minimized by 

the solution to the system 𝐴𝑥 = 𝑏. In this method, it 

starts off with 𝑥𝑖 , 𝑖 = 0 

𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑟𝑖 

𝛼 needs to be found to minized the function and the 

following definitions can be used: 

The residual:  𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 , 𝑟𝑖+1 = 𝑏 − 𝐴𝑥𝑖+1 

The error: 𝑒𝑖 = 𝑥𝑖 − 𝑥 

And 𝑟𝑖 = −𝐴𝑒𝑖 = −𝑓′(𝑥). We have 𝑟𝑖+1
𝑇 𝑟𝑖 = 0, and 

according to the above definitions: 

 

(𝑏 − 𝐴𝑥𝑖+1)𝑇𝑟𝑖 = 𝑟𝑖(𝑏 − 𝐴(𝑥𝑖 + 𝛼𝑖𝑟𝑖))
𝑇

 

(𝑏 − 𝐴𝑥𝑖)𝑇𝑟𝑖 =  𝛼(𝐴𝑟𝑖)𝑇𝑟𝑖  

 

Using 𝐴 = 𝐴𝑇  

𝑟𝑖
𝑇𝑟𝑖 = 𝛼𝑟𝑖

𝑇(𝐴𝑟𝑖) 

𝛼 =
𝑟𝑖

𝑇𝑟𝑖

𝑟𝑖
𝑇𝐴𝑟𝑖

 

 

2.3  The Method of Conjugate Directions (CD) 

 This method involves taking one step in each 

search direction and choosing a point 𝑥 

𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖 , 
which gives 

𝑒𝑖+1 = 𝑒𝑖 + 𝛼𝑖𝑑𝑖. 
 

For finding 𝛼𝑖, 𝑒𝑖+1 must be orthogonal to the direc-

tions 𝑑0, 𝑑1, … , 𝑑𝑖.  

Here, 𝑑𝑖
𝑇𝑒𝑖+1 = 0, 𝑑𝑖(𝑒𝑖 + 𝛼𝑖𝑑𝑖) = 0, thus 

𝛼𝑖 =
(−𝑑𝑖

𝑇𝑒𝑖)

𝑑𝑖
𝑇𝑑𝑖

 

If 𝑑𝑖 and 𝑑𝑗 to be conjugate, then 𝑑𝑖
𝑇𝐴𝑑𝑗 =  0, where 

𝐴 is symmetric matrix. When the search directions are 

A-orthogonal 

𝛼𝑖 =
−𝑑𝑖

𝑇𝐴𝑒𝑖

𝑑𝑖
𝑇𝐴𝑑𝑖

 

As – 𝐴𝑒𝑖 = 𝑟𝑖 

𝛼𝑖 =
𝑑𝑖

𝑇𝑟𝑖

𝑑𝑖
𝑇𝐴𝑑𝑖

 

The error term is 

𝑒𝑖 = 𝑒𝑖 +  ∑ 𝛼𝑗𝑑𝑗 

 

2.4 Method of Gram-Schmidt Conjugation 

This method is used to find minimum point of 

quadratic functions. By setting 𝑢𝑖 = 𝑑𝑖  for 𝑖 > 0 and 

using the definition of error term in the method of CD, 

𝑑𝑖 = 𝑢𝑖 + ∑ 𝐵𝑖𝑘𝑑𝑘 

 Premultiplying this equation by 𝐴𝑑𝑗 , we 

have  

𝑑𝑖
𝑇𝐴𝑑𝑗 = 𝑢𝑖

𝑇𝐴𝑑𝑗 + ∑ 𝐵𝑖𝑘𝑑𝑘
𝑇𝐴𝑑𝑗 

𝐵𝑖𝑘 =
−𝑢𝑖

𝑇𝐴𝑑𝑗

𝑑𝑗
𝑇𝐴𝑑𝑗

 

 

2.5     Conjugate Gradient 

 Conjugate gradient (CG) method is an itera-

tive method to solve large systems of linear equations 

involving large sparse systems. 

 

The algorithm can be summarized as: 

i. An approximated initial solution can be 

the input vector 𝑥𝑖  for 𝑖 = 0. 

𝑑𝑖 = 𝑟𝑖 , 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 

ii. From steepest descent method, the scalar 

𝛼𝑖 can be computed 

𝛼𝑖 =
𝑟𝑖

𝑇𝑟𝑖

𝑑𝑖
𝑇𝐴𝑑𝑖

 

iii. Find 

𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖 

iv. Compute next residual vector 

𝑟𝑖+1 = 𝑟𝑖 −  𝛼𝑖𝐴𝑑𝑖 

v. From CD and gram-schmidt method find 

scalar  

𝛽𝑖+1 =
𝑟𝑖+1

𝑇 𝑟𝑖+1

𝑟𝑖
𝑇𝑟𝑖

 

vi. Using the scalar 𝛽, obtain next search di-

rection 

𝑑𝑖+1 = 𝑟𝑖+1 +  𝛽𝑖+1𝑑𝑖 

and repeat for 𝑖 = 𝑖 + 1. Result is 𝑥𝑖+1. 

 

2.8  Arnoldi Iteration 

This method can be used on linear systems and 

eigenvalue problems. A general, nonsymmetric 𝐴  is 
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reduced to a Hessenberg form. 

 

 Let 𝑄𝑛  be a 𝑚 × 𝑛 matrix with first 𝑛 col-

umns of 𝑄: 

𝑄𝑛 = [𝑞1, 𝑞2, … , 𝑞𝑛] 

𝑄𝑛+1 = [𝑞1, 𝑞2, … , 𝑞𝑛, 𝑞𝑛+1] 

and consider first 𝑛 columns of 𝐴𝑄𝑛 = 𝑄𝑛+1𝐻�̃� .  

The 𝑛th column is  

𝐴𝑞𝑛 = ℎ1𝑛𝑞1 + ⋯ + ℎ𝑛𝑛𝑞𝑛 + ℎ𝑛+1𝑞𝑛+1 

which can be used to find 𝑞𝑛+1. This recursive com-

putation of columns of unitary matrix 𝑄 is Arnoldi it-

eration (Fasshauer). 

 

2.7 Generalized Minimal Residual Method 

(GMRES) 

 The GMRES is an iterative method that 

solves general non-symmetric linear systems (Walker & 

Zhou, 1994). The idea is to solve a least squares problem 

at each step of the iteration (Fasshauer). The GMRES 

algorithm can be summarized into the following steps: 

i. Use Arnoldi method to find 𝑞𝑛. 

ii. Find 𝑦𝑛  such that the residual ‖𝑟𝑛‖  is 

minimized. 

iii. Find 𝑥𝑛 by using 𝑥𝑛 = 𝑄𝑛𝑦𝑛. 

iv. Repeat till residual vector is minimized 

sufficiently. 

The rate at which the GMRES method converges de-

pends on how the eigenvalues of 𝐴 are distributed in the 

plane. If the eigenvalues are clustered away from the 

origin, the method will converge quickly. 

 

5. Choosing the “Best” Method 

 

Since there are a number of methods available, it is dif-

ficult to pinpoint as to which is the “best method” to 

solve a linear sparse system. Depending on the type of 

given system and what solution is wanted, a method that 

is better than the others can be selected for that partic-

ular system. 

 If 𝐴 is not very large, say, a 1000 × 1000 

matrix, it is easier to choose direct methods. For a 

symmetric and positive definite matrix, the Cholesky 

Factorization is a good choice. Direct methods give a 

very good accuracy and fails rarely. However, such di-

rect methods require the entire factorization to be com-

pleted for the results to be useful. It is time consuming 

and expensive. Additionally sparse matrices may not 

necessarily decompose into sparse matrices. This causes 

storage problems and the methods can slow down. 

 Iterative methods, on the other hand can give 

a partial result after a small number of iterations. It re-

quires less effort than direction methods and are often 

easy to program. If accuracy is not important, iterative 

methods such as CG or GMRES are better for sparse 

matrices. 

 The Sherman-Morrison formula requires 

only 𝑂(𝑛2) operations but it is applicable for rake-one 

changes only. Moreover, with repeated iterations, the 

formula destabilizes. 

 The CG method needs 𝑛 iterations to obtain 

an error free convergence but a pretty good approxima-

tion can be achieved with a few iterations. It requires 

only a few matrix-vector multiplications and some dot 

products per iteration which makes it a computationally 

inexpensive and numerically stable option. The method 

only fails if the matrix is not symmetric and positive 

definite. 

 GMRES is designed to work with 

non-symmetric systems (Coban & Lionheart, 2014). For 

a well-conditioned coefficient matrix, GMRES works a 

direct solver and an exact solution can be obtained in 𝑛 

steps. The disadvantage is that a large memory is re-

quired for storage. 

  

6. CONCLUSION 

Linear systems usually contain large sparse matrices 

which can be difficult when attempting to solve directly. 

An iterative approach can be taken such as detailed 

above. Depending on the type of linear system given and 

the requirements needed such as accuracy, storage, 

computation time can be conditions in picking a method 

that best suits the linear system. 
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