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ABSTRACT

" In this paper, we chose to study Principal Component Analysis(PCA) and K-mean clustering
algorithm(K) to investigate a set of real world telephone data. The raw data we received
showed high variation between maximum and minimum data. Hybrid PCAK was thus
proposed. The PCA normalize the data range and dimension. While K-mean clusters the
normalized and dimension reduced data into k cluster. The clustered output from PCAK

showed telephone use pattern of CST staff,
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1. INTRODUCTION

Data analysis is becoming increasingly'

difficult in data-rich fields due to large data
dimensions. For such fields, hybrid
implementation proved to classify and
organize data into easy to visualize output.

. Principal Components Analysis’ is a
standard tool in data analysis that
constructs a representation of the data with
a set of orthogonal basis vectors that are the
-eigenvectors of the covariance matrix
generated from the data. By projecting the
data onto the dominant eigenvectors, the
dimension of the original dataset can be
reduced with little loss of information.

K-means clustering is a type of data mining

algorithm involving the clustering of"

various observations into different groups.
It is very simple and the group clustering
can also be done without any knowledge of

-

variable relationships. It results in a more
efficient and faster way of determining
patterns especially when the data or
information involved is large. With hybrid
clustering technique, extraction of data and
analysis become much easier, efficient, and
faster. This proposed method is numerical,
unsupervised,  non-deterministic = and
iterative.

In this study, the MATIlab software is
chosen and used to construct PCAK hybrid
algorithm and analyze real world telephone
bill of staff’s office telephone bills.

2. THEORETICAL BACKGROUND
2.1 PCA

Principal component analysis is a variable
reduction procedure. When obtaining data
with a large number of variables, there
must be redundancy in those variables.
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Redundancy means the variables are
correlated with each other as they are

measuring the same construct. Therefore, to-

reduce the observed variables into a smaller
number of principal components or
artificial variables that are responsible for
most of the variance in the observed
variables, PCA is performed.

The PCA:

a. Simplifies data by reducing dimensions

of data space

b. Finds the most informative viewpoint

from which to visualize the data from a

scatter plot

¢. Produces low-dimensional images of

high dimensional shapes

d. Shows amount of variance between
axes

2.2 PCA ALGORITHM

According to (Smith, 2002), PCA

algorithm consists of six steps:

a. Generate a set of data )

b. Subtract the mean: subtract the mean

" fromeach of the data dimensions.

¢. Calculate the covariance matrix:In the

statistical analysis, covariance is computed

to find out how much the dimensions vary

‘from the mean with respect to each other. It

is always measured between two or more

dimensional data sets. The size of the

covariance matrix depends on dimension of

data. For example for 2 dimensional data,

covariance matrix will be 2x2 matrix,

similarly for 3-dimensional data it will be.

3x3 matrixes.
Let the subtracted mean be represented in
matrix B, and covariance matrix C can be
computed as:

a) where, B = transpose matrix of B
n= no. of data samples

- cov(x,x) cov(x,y)
“leov(y,x) cov(y,y)

d. Calculate the eigenvectors and
eigenvalues of the covariance matrix:

The eigenvector with the highest
eigenvalue is the principle component of
the data set. It is the most significant
relationship between the data dimensions.
In general, once eigenvectors are found
from the covariance matrix, the next step is
to order them by eigenvalue, highest to
lowest. This gives us the components in
order of significance. Now, if we like, we
can decide to ignore the components of
lesser significance. We do lose some
information, but if the eigenvalues are
small, we don’t lose much. If we leave out
some components, the final data set will
have fewer dimensions than the original.

¢. Choose components and form a
feature vector: once eigenvectors are
found from the covariance matrix, the next
step is to order them by eigenvalue, highest
to lowest. Thus the components are sorted
in order of significance. The number of
eigenvectors chosendecides the number of
dimensions of the new data set, thereby
constructs a feature vector(matrix of
vectors). From the list of eigenvectors take
the eigenvectors and form a matrix in the
columns:

FeatureVector
(eig_l,eig_2,.€ig_n)..........ccc (c)
f. Derive the new data set:Take the
transpose of the FeatureVector and
multiply with the original data set,
transposed:

FinalData = RowFeatureVectorx

RowDataAdjusted......(d) )
whereRowFeatureVector is the matrix with
the eigenvectors in the columns transposed
(the eigenvectors are now in the rows and
the most significant are in the top) and
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RowDataAdjusted is the mean-adjusted
data transposed (the data items are in each
column, with each row holding a separate
dimension).

. 2.3 COMPUTING THE PRINCIPAL
COMPONENTS
In computational terms the principal
components are found by calculating the
eigenvectors and eigenvalues of the data
covariance matrix. This process is
equivalent to finding the axis system in
which the co-variance matrix is diagonal.
The eigenvector with thelargest ei genvalue
is the direction of greatest variation, the one
with the second largest eigenvalue is the

(orthogonal) direction with the next highest-

variation and so on.

2.4 K-MEAN CLUSTERING
K:Means clustering generates a specific
number  of  clusters.  From  given
unsupervised data,it randomlychooses k
" clusters if user donot specify number of
cluster. At the end of each iteration, data
which are close to each other form groups
in to cluster. K-means is a partitioned
clustering algorithm.
Let the set of data points (or instances) D
be {x1, x2, ...,xn},
wherexi= (xil, xi2, ..., xir) is a vector in a
real-valued space XCRr, and r is the
number of attributes (dimensions) in the
data. :

The k-means algorithm partitions the given

data into & clusters.
a. Each cluster has a cluster center called
_ centroid.
b. K is either specified by the user or
randomly pickedfrom data. :

2.5 K-MEAN CLUSTERING
PROPERTIES

a. There are always K clusters.

b. There is always at least one item in
each cluster.

c. The clusters are non-hierarchical and

" they do not overlap.

d. It uses Euclidean distance to calculate
distance between Centre and data point.
Euclidean Distance is the most
common use of distance. It examines
the root of square differences between
coordinates of a pair of objects. The
Euclidean Distance between point’s p
and q is the length of the segment
connecting them:

2.6 K-MEAN CLUSTERING

ALGORITHM
a. Cluster number (K) and k-cluster
centroids are initialized using one of the
methods listed below:

i. Random initialization

ii. Sampling initialization
b. The distances between cluster centroids
and each objects are calculated, group is
assigned, comparing distances of each
object with the closest cluster center.
c¢. Determine the new center coordinate
from the new group.

d. Compute new distance with the new
centroid and objects, assign group to the
objects closest to cluster center.

e. Check for convergence, if not
converged, repeat procedure from step.c.

If the number of data is less than the
number of cluster then each data is
assumed as the centroid of the cluster. Each
centroid will have a cluster number. If the
number of data is bigger than the number of
cluster, for each data, distance to all
centroid is calculated and get the minimum
distance. This data is said belong to the
cluster that has minimum distance from this
data. :

Note: The convergence will always occur if
the following condition is satisfied:

i. Each switch in step 2 the sum of
distance from each training sample to that
training sample's group centroid s
decreased.
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ii. There are only finitely many
partitions of the training examples into k
clusters.

f. Stop

" 2.7 ARCHITECTURE OF K-MEAN
ALGORITHM

The fig.1 represents the architecture of k-
‘means. In its operation, number of cluster is
either set or generated from the data.
Centroid is initialized, distance between
data and centroid is computed. Cluster is
formed based on minimum distance. New
centroid is selected and keeps on shifting
data till it stops.

Fig. 1:Architecture of k-mean algorithm.

1.8 K-MEAN TIME COMPLEXITY
a. Computing distance between the vectors
is O(M), where M is the dimensionality of
vectors,

b. Reassigning clusters: O(KN) distance
computations, O(KNM).

c¢. Computing centroids: each vectors get
added to some centroid. O(NM)

d.” Assume two steps are done once for |
iterations: O(IKNM) '

3. METHODOLOGY

3.1 SYSTEM DESCRIPTION

The design of system is shown in Fig.2.
“The dimension reduction and normalization
of telephone data is done using PCA. The
preprocessed data is passed through k-mean

algorithm and cluster is generated as
output.

K-mean Clusterina l

OubutData |

Fig. 2: System diagram.

4. EXPERIMENT

4.1DATA

The telephone bill of nine month from July
2012 to March 2013 is collected and
tabulated as shown in table 1.

K
B
LB

4.2 APPLYING PCA TO THE DATA
SET

a. Subtract the mean

PCA subtracts the mean from each of the
data dimensions. Here, we basically
transformadata set producing new data
set(Fig 3)
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b. Calculate the covariance matrix

The covariance matrix is computed
usingMathlab function, covMatrix=cov(A).
covariance matrix from data set is shown in
fig. 4.

Covamix =
1.0e~605*
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Fig. 3:covariance matrix
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_ ¢ Calculate the eigenvectors and
eigenvalues of the covariance matrix

The eigenvectors and eigenvalues of the
covariance matrix of data set is computed

.using Mathlab function tools eighnvectors

and  eigenvalues. eigenvectors  and
eigenvalues generated is shown in fig. 4.
ﬂm\‘em'
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Fig. 4:eigenvectors and eigenvalues

'd. Choosing components and forming a
feature vector

the feature vector of data set is computed
using matlab tool function feature _vector.

The generated feature vector is shown in
fig. 5.

-

7

feature_vector =

-0.2139
-C.3180 0.1272
-0.4260 2763
-0.3332 -0.282¢
02911 ¢.2242
-C 3351 03286
-0.3203 0.2661
-0.3122 0.394¢
-0.2636 0.3533

Fig. 4:feature vector

0.139%

e. Deriving the new data set
Fingl Data -~ Row Feature Vector
Dyt st

X Rene

Row Feature Vector is the matrix with the
eigenvectors in the columns transposed so
that the eigenvectors are now in the rows,
with the most significant eigenvector at the
top.

Row Data Adjust is the mean-adjusted data
transposed, ie. the data items are in each
column, with each row holding a separate
dimension.

Final Data is the final data items in
columns, and dimensions along rows. It is
the original data solely in terms of the
vectors.(Sayad, 2010)

-

'Figure 4. Final data plot

1. Applying K-mean Algorithm to the
data set

The data is supplied as input to K
mean, by choosing three clusters. After
iterations the data is grouped into three
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clusters, the highest cluster number
indicates the person making more calls.

After data is given as input, we group the
data into three K i.e. 1, 2, and 3.The above
figure shows the data clustered into k=3
" ,red has four data indicating 4 people
making highest call.

The output is overlapping because distance
‘between the data are more, however, with
the help of PCA (Principal reduction
analysis) the data set is reduced into two
dimensions, hence in the output we can see
distinct three clusters with different colors
(my case red for highest call made, green

for low and blye for medium calls made by_

staff of CST). Also, with PCA, the group
remains unchanged i.e. the person making
highest or lowest call also remains the
same.

J
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Fig. plot before PCA with the same cluster
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Fig. Plot after PCA with the same cluster

It displays non-overlapping data grouped
into three clusters.

1. RESULT AND CONCLUSION
Using PCA, multidimensional data set was
normalized from the data ranges of
Nu.900 (lowest) to Nu.12,092 (highest)
and reduced to 2-dimensional data set.
Preprocessed data was clustered using k-
mean algorithm in to three clusters. The
'study showed that it was difficult for
single tools to analyze data. Upon
proposing the hybrid, it revealed distinct
three groups without overlap. It shows that
hybrid performs better than the single
tools.
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